Two injective proofs of a conjecture of Simion
نویسندگان
چکیده
Simion [9] conjectured the unimodality of a sequence counting lattice paths in a grid with a Ferrers diagram removed from the northwest corner. Recently, Hildebrand [5] and then Wang [11] proved the stronger result that this sequence is actually log concave. Both proofs were mainly algebraic in nature. We give two combinatorial proofs of this theorem.
منابع مشابه
$L^p$-Conjecture on Hypergroups
In this paper, we study $L^p$-conjecture on locally compact hypergroups and by some technical proofs we give some sufficient and necessary conditions for a weighted Lebesgue space $L^p(K,w)$ to be a convolution Banach algebra, where $1<p<infty$, $K$ is a locally compact hypergroup and $w$ is a weight function on $K$. Among the other things, we also show that if $K$ is a locally compact hyper...
متن کاملUnimodality and the Reeection Principle
We show how lattice paths and the re ection principle can be used to give easy proofs of unimodality results. In particular, we give a \one-line" combinatorial proof of the unimodality of the binomial coe cients. Other examples include products of binomial coe cients, polynomials related to the Legendre polynomials, and a result connected to a conjecture of Simion.
متن کاملUnimodality and the Reflection Principle
We show how lattice paths and the reflection principle can be used to give easy proofs of unimodality results. In particular, we give a “one-line” combinatorial proof of the unimodality of the binomial coefficients. Other examples include products of binomial coefficients, polynomials related to the Legendre polynomials, and a result connected to a conjecture of Simion.
متن کاملA Simple Proof of a Conjecture of Simion
Simion had a unimodality conjecture concerning the number of lattice paths in a rectangular grid with the Ferrers diagram of a partition removed. Hildebrand recently showed the stronger result that these numbers are log concave. Here we present a simple proof of Hildebrand’s result.
متن کاملS ep 2 00 8 A Simple Proof of a Conjecture of Simion ∗
Simion had a unimodality conjecture concerning the number of lattice paths in a rectangular grid with the Ferrers diagram of a partition removed. Hildebrand recently showed the stronger result that these numbers are log concave. Here we present a simple proof of Hildebrand’s result.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comb. Theory, Ser. A
دوره 102 شماره
صفحات -
تاریخ انتشار 2003